English

Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}`Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}`Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}` - Mathematics

Advertisements
Advertisements

Question

Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`

Solution

Let `sin^-1  1/2=y`

Then,

`siny=1/2`

`thereforetan^-1{2cos(2sin^-1  1/2)}=tan^-1{2cos2y}`

`=tan^-1(2(1-2sin^2y))`     `[becausecos2x=1-2sin^2x]`

`=tan^-1{2(1-2xx1/4)}`     `[becausesiny=1/2]`

`=tan^-1{2xx1/2}`

`=tan^-1 1`

`=pi/4`

 

`thereforetan^-1{2cos(2sin^-1  1/2)}=pi/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 116]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 7.1 | Page 116

RELATED QUESTIONS

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cos(tan^-1  3/4)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1)(3x-1)`.


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


tanx is periodic with period ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×