Advertisements
Advertisements
Question
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Solution
Let, `cos^-1 sqrt5/3=theta`
`=> costheta=sqrt5/3`
`=>2cos^2 theta/2-1=sqrt5/3`
`=>cos^2 theta/2=(3+sqrt5)/6`
`=>theta/2=cos^-1(sqrt((3+sqrt5)/6))`
`=tan^-1((sqrt(1-(sqrt((3+sqrt5)/6))^2))/(sqrt((3+sqrt5)/6)))`
`=tan^-1(sqrt(1-(3+sqrt5)/6)/sqrt(3+sqrt5/6))`
`=tan^-1((sqrt((3-sqrt5)/6))/(sqrt((3+sqrt5)/6)))`
`=tan^-1(sqrt((3-sqrt5)/(3+sqrt5)))`
`=tan^-1(sqrt(((3-sqrt5)(3-sqrt5))/((3+sqrt5)(3-sqrt5))))`
`=tan^-1(sqrt((3-sqrt5)^2/(9-5)))`
`=tan^-1((3-sqrt5)/2)`
i. e. , `1/2(cos^-1 sqrt5/3)=tan^-1 ((3-sqrt5)/2)`
`=>tan 1/2(cos^-1 sqrt5/3)=tan[tan^-1((3-sqrt5)/2)]`
`thereforetan 1/2(cos^-1 sqrt5/3)=(3-sqrt5)/2`
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cosec(cos^-1 3/5)`
`sin^-1x=pi/6+cos^-1x`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.