English

Evaluate the Following: `Tan 1/2(Cos^-1 Sqrt5/3)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`

Solution

Let, `cos^-1  sqrt5/3=theta`

`=> costheta=sqrt5/3`

`=>2cos^2  theta/2-1=sqrt5/3`

`=>cos^2  theta/2=(3+sqrt5)/6`

`=>theta/2=cos^-1(sqrt((3+sqrt5)/6))`

`=tan^-1((sqrt(1-(sqrt((3+sqrt5)/6))^2))/(sqrt((3+sqrt5)/6)))`

`=tan^-1(sqrt(1-(3+sqrt5)/6)/sqrt(3+sqrt5/6))`

`=tan^-1((sqrt((3-sqrt5)/6))/(sqrt((3+sqrt5)/6)))`

`=tan^-1(sqrt((3-sqrt5)/(3+sqrt5)))`

`=tan^-1(sqrt(((3-sqrt5)(3-sqrt5))/((3+sqrt5)(3-sqrt5))))`

`=tan^-1(sqrt((3-sqrt5)^2/(9-5)))`

`=tan^-1((3-sqrt5)/2)`

i. e. , `1/2(cos^-1  sqrt5/3)=tan^-1  ((3-sqrt5)/2)`

`=>tan  1/2(cos^-1  sqrt5/3)=tan[tan^-1((3-sqrt5)/2)]`

`thereforetan  1/2(cos^-1  sqrt5/3)=(3-sqrt5)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 1.2 | Page 115

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cosec(cos^-1  3/5)`


`sin^-1x=pi/6+cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 (cos 1540°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×