Advertisements
Advertisements
Question
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
Options
`1/sqrt3`
`-1/sqrt3`
`sqrt3`
`-sqrt3/4`
Solution
(a) `1/sqrt3`
Let `x=tany`
Then,
\[3 \sin^{- 1} \left( \frac{2\tan{y}}{1 + \tan^2 y} \right) - 4\left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) + 2 \tan^{- 1} \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) = \frac{\pi}{3}\]
\[ \Rightarrow 3 \sin^{- 1} \left( \sin 2y \right) - 4 \cos^{- 1} \left( \cos 2y \right) + 2 \tan^{- 1} \left( \tan2y \right) = \frac{\pi}{3} \]
\[ \left[ \because \sin2y = \left( \frac{2\tan{y}}{1 + \tan^2 y} \right), \cos2y = \left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) \text{ and }\tan2y = \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) \right]\]
\[ \Rightarrow 3 \times 2y - 4 \times 2y + 2 \times 2y = \frac{\pi}{3}\]
\[ \Rightarrow 6y - 8y + 4y = \frac{\pi}{3}\]
\[ \Rightarrow 2y = \frac{\pi}{3}\]
\[ \Rightarrow y = \frac{\pi}{6}\]
\[ \Rightarrow \tan^{- 1} x = \frac{\pi}{6} \left[ \because \tan^{- 1} x = y \right]\]
\[ \Rightarrow x = \tan\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{1}{\sqrt{3}}\]
APPEARS IN
RELATED QUESTIONS
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`cot(cos^-1 3/5)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 (sin 1550°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
tanx is periodic with period ____________.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`