Advertisements
Advertisements
Question
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Solution
\[\text{Let }y = \cos^{- 1} \left( \frac{3}{5} \right)\]
\[ \Rightarrow \cos{y} = \frac{3}{5}\]
Now,
\[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \cos^2 \left( \frac{1}{2}y \right)\]
\[ = \frac{\cos{y} + 1}{2} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ = \frac{\frac{3}{5} + 1}{2}\]
\[ = \frac{\frac{8}{5}}{2}\]
\[ = \frac{4}{5}\]
∴ \[\cos^2 \left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right) = \frac{4}{5}\]
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin4)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sec(sin^-1 12/13)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin(sin^-1 1/5+cos^-1x)=1`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the value of `sin^-1(cos((33π)/5))`.