English

​Find the Principal Values of the Following: `Cos^-1(-sqrt3/2)` - Mathematics

Advertisements
Advertisements

Question

​Find the principal values of the following:
`cos^-1(-sqrt3/2)`

Solution

Let `cos^-1(-sqrt3/2) = y`

Then,

`cosy=-sqrt3/2`

We know that the range of the principal value branch is [0, π].

Thus, 

`cosy=-sqrt3/2=cos((5pi)/6)`

`=>y=(5pi)/6in[0,pi]`

Hence, the principal value of `cos^-1(-sqrt3/2)` is `(5pi)/6.`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.02 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.02 | Q 4.1 | Page 10

RELATED QUESTIONS

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cot{sec^-1(-13/5)}`


`sin(sin^-1  1/5+cos^-1x)=1`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×