Advertisements
Advertisements
Question
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Options
7
6
5
none of these
Solution
(a) 7
Let \[2 \cot^{- 1} 3 = y\]
Then,
\[\cot\frac{y}{2} = 3\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) = \cot\left( \frac{\pi}{4} - y \right)\]
\[ = \frac{\cot\frac{\pi}{4}\cot{y} + 1}{\cot{y} - \cot\frac{\pi}{4}}\]
\[ = \frac{\cot{y} + 1}{\cot{y} - 1} \]
\[ = \frac{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} + 1}{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} - 1}\]
\[ = \frac{\cot^2 \frac{y}{2} + 2\cot\frac{y}{2} - 1}{\cot^2 \frac{y}{2} - 2\cot\frac{y}{2} - 1}\]
\[ = \frac{9 + 6 - 1}{9 - 6 - 1}\]
\[ = 7\]
APPEARS IN
RELATED QUESTIONS
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
The period of the function f(x) = tan3x is ____________.