English

Cot ( π 4 − 2 Cot − 1 3 ) = (A) 7 (B) 6 (C) 5 (D) None of These - Mathematics

Advertisements
Advertisements

Question

\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 

Options

  • 7

  • 6

  • 5

  • none of these

MCQ

Solution

(a) 7

Let  \[2 \cot^{- 1} 3 = y\]
Then,
\[\cot\frac{y}{2} = 3\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) = \cot\left( \frac{\pi}{4} - y \right)\]
\[ = \frac{\cot\frac{\pi}{4}\cot{y} + 1}{\cot{y} - \cot\frac{\pi}{4}}\]
\[ = \frac{\cot{y} + 1}{\cot{y} - 1} \]
\[ = \frac{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} + 1}{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} - 1}\]
\[ = \frac{\cot^2 \frac{y}{2} + 2\cot\frac{y}{2} - 1}{\cot^2 \frac{y}{2} - 2\cot\frac{y}{2} - 1}\]
\[ = \frac{9 + 6 - 1}{9 - 6 - 1}\]
\[ = 7\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 29 | Page 122

RELATED QUESTIONS

Solve the equation for x:sin1x+sin1(1x)=cos1x


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×