Advertisements
Advertisements
Question
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Solution
`sin(tan^-1x+tan^-1 1/x)=sin[tan^-1(-x)+tan^-1(-1/x)]` `[thereforex<0]`
`=sin[-tan^-1(x)-tan^-1(1/x)]`
`=sin{-[tan^-1(x)+tan^-1(1/x)]}`
`=sin[-(tan^-1x+cot^-1x)]` `[thereforetan^-1 1/x=cot^-1x]`
`=-sin(tan^-1x+cot^-1x)`
`=-sin(pi/2)` `[thereforetan^-1x+cot^-1x=pi/2]`
= -1
APPEARS IN
RELATED QUESTIONS
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`tan{cos^-1(-7/25)}`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 2/3=1/2tan^-1 12/5`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the value of sin (cot−1 x).
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`