English

If `Sin^-1 (2a)/(1+A^2)+Sin^-1 (2b)/(1+B^2)=2tan^-1x,` Prove That `X=(A+B)/(1-ab).` - Mathematics

Advertisements
Advertisements

Question

If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`

Solution

Let: a = tan z
      b = tan y

Then,

`sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x`

`=>sin^-1  (2tanz)/(1+tan^2z)+sin^-1  (2tany)/(1+tan^2y)=2tan^-1x`

`=>sin^-1(sin2z)+sin^-1(sin2y)=2tan^-1x`       `[becausesin2x=(2tanx)/(1+tan^2x)]`

`=>2z+2y=2tan^-1x`

`=>tan^-1a+tan^-1b=tan^-1x`       `[becausea=tanzandb=tany]`

`=>tan^-1  (a+b)/(1-ab)=tan^-1x`     `[becausetan^-1x+tan^-1y=tan^-1  (x+y)/(1-xy)]`

`=>x=(a+b)/(1-ab)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 5 | Page 115

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin2)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Find the domain of `sec^(-1)(3x-1)`.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×