English

Prove that : Tan − 1 ( √ 1 + X 2 + √ 1 − X 2 √ 1 + X 2 − √ 1 − X 2 ) = π 4 + 1 2 Cos − 1 X 2 ; 1 < X < 1 .Prove that : Tan − 1 ( √ 1 + X 2 + √ 1 − X 2 √ 1 + X 2 − √ 1 − X 2 ) = π 4 + 1 2 Cos − 1 - Mathematics

Advertisements
Advertisements

Question

Prove that : tan1(1+x2+1x21+x21x2)=π4+12cos1x2;1<x<1.

Solution

Put x2=cos2θ, we have 

tan1(1+cos2θ+1cos2θ1+cos2θ1cos2θ)

=tan1(2cos2θ+2sin2θ2cos2θ2sin2θ)

=tan1(cosθ+sinθcosθsinθ)

=tan1(1+tanθ1tanθ)

=tan1[tan(π4+θ)]

=π4+θ[1<x<10<x2<10<2θ<π20<θ<π4]

=π4+12cos1x2[x2=cos2θ2θ=cos1x2]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Foreign Set 3

RELATED QUESTIONS

Write the value of tan(2tan-1(15))


​Find the principal values of the following:

cos-1(tan 3π4)


Evaluate the following:

cos-1(cos4)


Evaluate the following:

tan-1(tan12)


Evaluate the following:

cosec-1(cosec π4)


Evaluate the following:

cosec-1(cosec 6π5)


Evaluate the following:

cot-1(cot 19π6)


Evaluate the following:

cos(tan-1 247)


Prove the following result

sin(cos-1 35+sin-1 513)=6365


Prove the following result:

sin-1 1213+cos-1 45+tan-1 6316=π


Solve the following:

sin-1x+sin-1 2x=π3


Solve cos-13x+cos-1x=π2


sin-1 45+2tan-1 13=π2


2sin-1 35-tan-1 1731=π4


Prove that

sin{tan-1 1-x22x+cos-1 1-x22x}=1


Show that 2tan-1x+sin-1 2x1+x2 is constant for x ≥ 1, find that constant.


Write the value of tan1x + tan−1 (1x)for x > 0.


Write the value of tan1 x + tan−1 (1x)  for x < 0.


If tan1(3)+cot1x=π2, find x.


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of  cot-1(-x)  for all xR in terms of cot-1(x)


Find the value of 2sec12+sin1(12)


If cos(sin125+cos1x)=0, find the value of x.

 

Let f (x) = ecos-1{sin(x+π3}.
Then, f (8π/9) = 


If cos1x2+cos1y3=θ,  then 9x2 − 12xy cos θ + 4y2 is equal to


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Find the real solutions of the equation
tan-1x(x+1)+sin-1x2+x+1=π2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.