Advertisements
Advertisements
Question
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Solution
LHS = `2sin^-1 3/5-tan^-1 17/31`
`=2tan^-1 (3/4)/sqrt(1-9/25)-tan^-1 17/31` `[becausesin^-1x=tan^-1 x/sqrt(1-x^2)]`
`=2tan^-1 (3/5)/(4/5)-tan^-1 17/31`
`=2tan^-1 3/4-tan^-1 17/31`
`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1 17/31` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(3/2)/(7/16)}-tan^-1 17/31`
`=tan^-1 24/7-tan^-1 17/31`
`=tan^-1((24/7-17/31)/(1+24/7xx17/31))` `[becausetan^-1x-tan^-1y=tan^-1((x+y)/(1+xy))]`
`=tan^-1((625/217)/(625/217))`
`=tan^-1 1=pi/4=`RHS
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin3)`
`sin^-1(sin2)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the range of tan−1 x.
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If sin−1 x − cos−1 x = `pi/6` , then x =
If tan−1 3 + tan−1 x = tan−1 8, then x =
If 4 cos−1 x + sin−1 x = π, then the value of x is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`