English

`2sin^-1 3/5-tan^-1 17/31=Pi/4` - Mathematics

Advertisements
Advertisements

Question

`2sin^-1  3/5-tan^-1  17/31=pi/4`

Solution

LHS = `2sin^-1  3/5-tan^-1  17/31`

`=2tan^-1  (3/4)/sqrt(1-9/25)-tan^-1  17/31`      `[becausesin^-1x=tan^-1  x/sqrt(1-x^2)]`

`=2tan^-1  (3/5)/(4/5)-tan^-1  17/31`

`=2tan^-1  3/4-tan^-1  17/31`

`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1  17/31`    `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(3/2)/(7/16)}-tan^-1  17/31`

`=tan^-1  24/7-tan^-1  17/31`

`=tan^-1((24/7-17/31)/(1+24/7xx17/31))`      `[becausetan^-1x-tan^-1y=tan^-1((x+y)/(1+xy))]`

`=tan^-1((625/217)/(625/217))`

`=tan^-1 1=pi/4=`RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.06 | Page 115

RELATED QUESTIONS

​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin3)`


`sin^-1(sin2)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the range of tan−1 x.


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If sin−1 − cos−1 x = `pi/6` , then x = 


If tan−1 3 + tan−1 x = tan−1 8, then x =


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×