Advertisements
Advertisements
Question
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solution
LHS = `2tan^-1 1/5+tan^-1 1/8`
`=tan^-1{(2xx1/5)/(1-(1/5)^2)}+tan^-1 1/8` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(2/5)/(24/25)}+tan^-1 1/8`
`=tan^-1 5/12+tan^-1 1/8`
`=tan^-1((5/12+1/8)/(1-5/12xx1/8))` `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`
`=tan^-1((13/24)/(91/96))`
`=tan^-1 4/7`= RHS
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate:
`cos{sin^-1(-7/25)}`
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 (cos 6).
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If tan−1 (cot θ) = 2 θ, then θ =
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
The value of sin `["cos"^-1 (7/25)]` is ____________.