Advertisements
Advertisements
Question
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Solution
For `cos^-1 (x^2 - 4)` to be defined
`-1 ≤ x^2 - 4 ≤ 1`
⇒ `3 ≤ x^2 ≤ 5`
⇒ `x in [- sqrt5, - sqrt3 ] cup [sqrt3, sqrt5 ] `
Hence, the domain of `f(x) is [-sqrt5, -sqrt3] cup [sqrt3, sqrt5]`.
APPEARS IN
RELATED QUESTIONS
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (7pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cos(tan^-1 24/7)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of sin `["cos"^-1 (7/25)]` is ____________.