Advertisements
Advertisements
Question
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Solution
We have
\[\tan^{- 1} \left\{ \tan\left( \frac{15\pi}{4} \right) \right\} = \tan^{- 1} \left\{ \tan\left( 4\pi - \frac{\pi}{4} \right) \right\}\]
\[ \tan^{- 1} \left\{ - \tan\left( \frac{\pi}{4} \right) \right\} \left[ \because \tan\left( 4\pi - x \right) = - \tan{x} \right]\]
\[ = \tan^{- 1} \left\{ \tan\left( - \frac{\pi}{4} \right) \right\} \]
\[ = - \frac{\pi}{4} \left[ \because \tan^{- 1} \left( \tan{x} \right) = x \right] \]
∴ \[\tan^{- 1} \left\{ \tan\left( \frac{15\pi}{4} \right) \right\} = - \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`tan(cos^-1 8/17)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cosec{cot^-1(-12/5)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
`5tan^-1x+3cot^-1x=2x`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 2/3=1/2tan^-1 12/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
The value of sin `["cos"^-1 (7/25)]` is ____________.