English

Write the Value of Tan−1 - Mathematics

Advertisements
Advertisements

Question

Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]

Solution

We have
\[\tan^{- 1} \left\{ \tan\left( \frac{15\pi}{4} \right) \right\} = \tan^{- 1} \left\{ \tan\left( 4\pi - \frac{\pi}{4} \right) \right\}\]
\[ \tan^{- 1} \left\{ - \tan\left( \frac{\pi}{4} \right) \right\} \left[ \because \tan\left( 4\pi - x \right) = - \tan{x} \right]\]
\[ = \tan^{- 1} \left\{ \tan\left( - \frac{\pi}{4} \right) \right\} \]
\[ = - \frac{\pi}{4} \left[ \because \tan^{- 1} \left( \tan{x} \right) = x \right] \]
∴ \[\tan^{- 1} \left\{ \tan\left( \frac{15\pi}{4} \right) \right\} = - \frac{\pi}{4}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 27 | Page 117

RELATED QUESTIONS

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cosec{cot^-1(-12/5)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`5tan^-1x+3cot^-1x=2x`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


`tan^-1  2/3=1/2tan^-1  12/5`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×