Advertisements
Advertisements
Question
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Solution
LHS `=sin(cos^-1 3/5+sin^-1 5/13)`
`=sin[sin^-1sqrt(1-(3/5)^2)+sin^-1 5/13]`
`=sin[sin^-1 4/5+sin^-1 5/13]`
`=sin{sin^-1[4/5xxsqrt(1-(5/13)^2)+5/13xxsqrt(1-(4/5)^2)]}`
`=sin[sin^-1(48/65+15/65)]`
`=sin(sin^-1 63/65)`
`=63/65 =`RHS
APPEARS IN
RELATED QUESTIONS
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of sin (cot−1 x).
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If sin−1 x − cos−1 x = `pi/6` , then x =
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].