English

If Cos − 1 X 3 + Cos − 1 Y 2 = θ 2 , Then 4 X 2 − 12 X Y Cos θ 2 + 9 Y 2 = (A) 36 (B) 36 − 36 Cos θ (C) 18 − 18 Cos θ (D) 18 + 18 Cos θ - Mathematics

Advertisements
Advertisements

Question

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]

Options

  • 36

  • 36 − 36 cos θ

  • 18 − 18 cos θ

  • 18 + 18 cos θ

MCQ

Solution

(c) 18 − 18 cosθ

We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left( xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right)\]
\[\therefore \cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}\]
\[ \Rightarrow \cos^{- 1} \left( \frac{x}{3}\frac{y}{2} - \sqrt{1 - \frac{x^2}{9}}\sqrt{1 - \frac{y^2}{4}} \right) = \frac{\theta}{2}\]
\[ \Rightarrow \frac{xy}{6} - \sqrt{\frac{9 - x^2}{9}}\sqrt{\frac{4 - y^2}{4}} = \cos\frac{\theta}{2}\]
\[ \Rightarrow xy - 6\cos\frac{\theta}{2} = \sqrt{9 - x^2}\sqrt{4 - y^2}\]
Squaring both the sides, we get
\[x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = \left( 9 - x^2 \right)\left( 4 - y^2 \right)\]
\[ \Rightarrow x^2 y^2 - 12xy\cos\frac{\theta}{2} + 36 \cos^2 \frac{\theta}{2} = 36 - 9 y^2 - 4 x^2 + x^2 y^2 \]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36 - 36 \cos^2 \frac{\theta}{2}\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 36\left\{ 1 - \left( \frac{\cos\theta + 1}{2} \right) \right\} \left[ \because \cos2x = 2 \cos^2 x - 1 \right]\]
\[ \Rightarrow 4 x^2 + 9 y^2 - 12xy \cos^2 \frac{\theta}{2} = 18 - 18\cos\theta\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 13 | Page 120

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If sin−1 − cos−1 x = `pi/6` , then x = 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×