English

If Y = Sin (Sin X), Prove that D 2 Y D X 2 + Tan X D Y D X + Y Cos 2 X = 0 . - Mathematics

Advertisements
Advertisements

Question

If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]

Solution

\[y = \sin(\sin x)\]

\[\frac{dy}{dx} = \cos(\sin x) . \cos x\]

\[\frac{d^2 y}{d x^2} = \cos(\sin x) . ( - \sin x) + \cos x . { - \sin(\sin x)} . \cos x = - \sin x . \cos(\sin x) - y \cos^2 x\]

\[\text { Now,} \]

\[\frac{d^2 y}{d x^2} + \tan x . \frac{dy}{dx} + y \cos^2 x\]

\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \frac{\sin x}{\cos x} . \cos(\sin x) . \cos x + y \cos^2 x\]

\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \sin x . \cos(\sin x) + y \cos^2 x\]

\[ = 0 .\]

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) All India Set 3

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of cos−1 (cos 6).


The set of values of `\text(cosec)^-1(sqrt3/2)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If tan−1 (cot θ) = 2 θ, then θ =

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×