English

If `Cot(Cos^-1 3/5+Sin^-1x)=0`, Find the Values of X. - Mathematics

Advertisements
Advertisements

Question

If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.

Solution

`cot(cos^-1  3/5+sin^-1x)=0`

⇒ `cos^-1  3/5+sin^-1x=cot0`

⇒ `cos^-1  3/5sin^-1x=pi/2`

⇒ `cos^-1  3/5=pi/2-sin^-1x`

⇒ `cos^-1  3/5=cos^-1x`     `[becausecos^-1x=pi/2-sin^-1x]`

⇒ `x=3/5`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.10 [Page 66]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.10 | Q 4 | Page 66

RELATED QUESTIONS

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cos(tan^-1  3/4)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×