English

If Cos − 1 X 2 + Cos − 1 Y 3 = θ , Then 9x2 − 12xy Cos θ + 4y2 is Equal to (A) 36 (B) −36 Sin2 θ (C) 36 Sin2 θ (D) 36 Cos2 θ - Mathematics

Advertisements
Advertisements

Question

If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to

Options

  • 36

  •  −36 sin2 θ

  • 36 sin2 θ

  • 36 cos2 θ

MCQ

Solution

(c) 36 sin2 θ

We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left[ xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right]\]
Now,
\[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta\]
\[ \Rightarrow \cos^{- 1} \left[ \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} \right] = \theta\]
\[ \Rightarrow \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} = \cos\theta\]
\[ \Rightarrow xy - \sqrt{4 - x^2}\sqrt{9 - y^2} = 6\cos\theta\]
\[ \Rightarrow \sqrt{4 - x^2}\sqrt{9 - y^2} = xy - 6\cos\theta\]
\[ \Rightarrow \left( 4 - x^2 \right)\left( 9 - y^2 \right) = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta (\text{ Squaring both the sides })\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 + x^2 y^2 = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 = 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 - 36 \cos^2 \theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 \sin^2 \theta\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 17 | Page 121

RELATED QUESTIONS

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1)(3x-1)`.


The period of the function f(x) = tan3x is ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×