Advertisements
Advertisements
Question
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
Options
36
−36 sin2 θ
36 sin2 θ
36 cos2 θ
Solution
(c) 36 sin2 θ
We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left[ xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right]\]
Now,
\[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta\]
\[ \Rightarrow \cos^{- 1} \left[ \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} \right] = \theta\]
\[ \Rightarrow \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} = \cos\theta\]
\[ \Rightarrow xy - \sqrt{4 - x^2}\sqrt{9 - y^2} = 6\cos\theta\]
\[ \Rightarrow \sqrt{4 - x^2}\sqrt{9 - y^2} = xy - 6\cos\theta\]
\[ \Rightarrow \left( 4 - x^2 \right)\left( 9 - y^2 \right) = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta (\text{ Squaring both the sides })\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 + x^2 y^2 = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 = 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 - 36 \cos^2 \theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 \sin^2 \theta\]
APPEARS IN
RELATED QUESTIONS
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Sum the following series:
`tan^-1 1/3+tan^-1 2/9+tan^-1 4/33+...+tan^-1 (2^(n-1))/(1+2^(2n-1))`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the domain of `sec^(-1)(3x-1)`.
The period of the function f(x) = tan3x is ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.
Find the value of `sin^-1(cos((33π)/5))`.