मराठी

If Cos − 1 X 2 + Cos − 1 Y 3 = θ , Then 9x2 − 12xy Cos θ + 4y2 is Equal to (A) 36 (B) −36 Sin2 θ (C) 36 Sin2 θ (D) 36 Cos2 θ - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to

पर्याय

  • 36

  •  −36 sin2 θ

  • 36 sin2 θ

  • 36 cos2 θ

MCQ

उत्तर

(c) 36 sin2 θ

We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left[ xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right]\]
Now,
\[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta\]
\[ \Rightarrow \cos^{- 1} \left[ \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} \right] = \theta\]
\[ \Rightarrow \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} = \cos\theta\]
\[ \Rightarrow xy - \sqrt{4 - x^2}\sqrt{9 - y^2} = 6\cos\theta\]
\[ \Rightarrow \sqrt{4 - x^2}\sqrt{9 - y^2} = xy - 6\cos\theta\]
\[ \Rightarrow \left( 4 - x^2 \right)\left( 9 - y^2 \right) = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta (\text{ Squaring both the sides })\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 + x^2 y^2 = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 = 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 - 36 \cos^2 \theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 \sin^2 \theta\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 17 | पृष्ठ १२१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


Show that `2tan^-1x+sin^-1  (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of cos−1 (cos 1540°).


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×