Advertisements
Advertisements
प्रश्न
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
पर्याय
36
−36 sin2 θ
36 sin2 θ
36 cos2 θ
उत्तर
(c) 36 sin2 θ
We know
\[\cos^{- 1} x + \cos^{- 1} y = \cos^{- 1} \left[ xy - \sqrt{1 - x^2}\sqrt{1 - y^2} \right]\]
Now,
\[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta\]
\[ \Rightarrow \cos^{- 1} \left[ \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} \right] = \theta\]
\[ \Rightarrow \frac{x}{2}\frac{y}{3} - \sqrt{1 - \frac{x^2}{4}}\sqrt{1 - \frac{y^2}{3}} = \cos\theta\]
\[ \Rightarrow xy - \sqrt{4 - x^2}\sqrt{9 - y^2} = 6\cos\theta\]
\[ \Rightarrow \sqrt{4 - x^2}\sqrt{9 - y^2} = xy - 6\cos\theta\]
\[ \Rightarrow \left( 4 - x^2 \right)\left( 9 - y^2 \right) = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta (\text{ Squaring both the sides })\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 + x^2 y^2 = x^2 y^2 + 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 36 - 4 y^2 - 9 x^2 = 36 \cos^2 \theta - 12xy\cos\theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 - 36 \cos^2 \theta\]
\[ \Rightarrow 9 x^2 - 12xy\cos\theta + 4 y^2 = 36 \sin^2 \theta\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
`sin^-1(sin (13pi)/7)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos−1 (cos 1540°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.
Find the value of `sin^-1(cos((33π)/5))`.