Advertisements
Advertisements
प्रश्न
Find the value of `sin^-1(cos((33π)/5))`.
उत्तर
`sin^-1(cos((33π)/5))`
= `sin^-1 cos(6π + (3π)/5)`
= `sin^-1 cos((3π)/5)`
= `sin^-1 sin(π/2 - (3π)/5)`
= `π/2 - (3π)/5`
= `-π/10`.
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin3)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to