मराठी

Solve the equation for x:sin^(−1)x+sin^(−1)(1−x)=cos^(−1)x - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x

उत्तर

We have,

sin1x+sin1(1x)=cos1x

`sin^−1 x -cos^−1 x=-sin^−1 (1−x)`

`sin^−1 x -cos^−1 x=sin^−1 (x-1) ......................(1)   [because sin^(-1)(-x)=-sin^-1x]`

`Put sin^-1 x=theta and cos^-1 x= phi`

`sin theta=x and cos phi=x`

`then cos theta=sqrt(1-sin^2theta) and sin phi=sqrt(1-cos^2 phi)`

`cos theta=sqrt(1-x^2) and sin phi =sqrt(1-x^2)`

Applying the formula:

`sin(theta-phi)=sin theta cos phi-cos theta sin phi` , we get

`sin(theta-phi)=x.x-sqrt(1-x^2)sqrt(1-x^2)`

`sin(theta-phi)=x^2-(1-x^2)`

`sin(theta-phi)=x^2-1+x^2`

`sin(theta-phi)=2x^2-1`

`(theta-phi)=sin^-1(2x^2-1)`

`sin^-1x - cos^-1 x=sin^-1(2x^2-1).............(2)`

From (1)  and  (2), we get 

`sin^-1 (2x^2-1)= sin^-1 (x-1)`

`2x^2-x=0`

`x(2x-1)=0`

`x=0 or 2x-1=0`

`x=0 or x=1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 2 C

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin12)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`cot(cos^-1  3/5)`


Solve: `cos(sin^-1x)=1/6`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of cos−1 (cos 1540°).


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×