Advertisements
Advertisements
प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
उत्तर
We have,
sin−1x+sin−1(1−x)=cos−1x
`sin^−1 x -cos^−1 x=-sin^−1 (1−x)`
`sin^−1 x -cos^−1 x=sin^−1 (x-1) ......................(1) [because sin^(-1)(-x)=-sin^-1x]`
`Put sin^-1 x=theta and cos^-1 x= phi`
`sin theta=x and cos phi=x`
`then cos theta=sqrt(1-sin^2theta) and sin phi=sqrt(1-cos^2 phi)`
`cos theta=sqrt(1-x^2) and sin phi =sqrt(1-x^2)`
Applying the formula:
`sin(theta-phi)=sin theta cos phi-cos theta sin phi` , we get
`sin(theta-phi)=x.x-sqrt(1-x^2)sqrt(1-x^2)`
`sin(theta-phi)=x^2-(1-x^2)`
`sin(theta-phi)=x^2-1+x^2`
`sin(theta-phi)=2x^2-1`
`(theta-phi)=sin^-1(2x^2-1)`
`sin^-1x - cos^-1 x=sin^-1(2x^2-1).............(2)`
From (1) and (2), we get
`sin^-1 (2x^2-1)= sin^-1 (x-1)`
`2x^2-x=0`
`x(2x-1)=0`
`x=0 or 2x-1=0`
`x=0 or x=1/2`
APPEARS IN
संबंधित प्रश्न
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin12)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`cot(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of cos−1 (cos 1540°).
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Find the domain of `sec^(-1) x-tan^(-1)x`