Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
उत्तर
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
`thereforetan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
`=>tan^-1 1/4+tan^-1 1/5+tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
`=>tan^-1((1/4+1/5)/(1-1/4xx1/5))+tan^-1((1/5+1/6)/(1-1/5xx1/6))+tan^-1 1/x=pi/4`
`=>tan^-1((9/20)/(19/20))+tan^-1((11/30)/(29/30))+tan^-1 1/x=pi/4`
`=>tan^-1(9/19)+tan^-1(11/29)+tan^-1 1/x=pi/4`
`=>tan^-1((9/19+11/29)/(1-11/29xx1/x))+tan^-1 1/x=pi/4`
`=>tan^-1 (235/226)+tan^-1 1/x=pi/4`
`=>tan^-1((235/226+1/x)/(1-235/226xx1/x))=pi/4`
`=>(235x+226)/(226x-235)=tan pi/4`
`=>(235x+226)/(226x-235)=1`
`=>235x+226=226x-235`
`=>9x=-461`
`=>x=-461/9`
APPEARS IN
संबंधित प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (17pi)/8)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 (cos 6).
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
If sin−1 x − cos−1 x = `pi/6` , then x =
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to