Advertisements
Advertisements
प्रश्न
`sin^-1(sin12)`
उत्तर
We know
`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`
We have
= `sin^-1sin36°`
= `- sin^-1sin(4pi-12)`
= `-(4pi-12)`
= `-4pi+12`
= `12-4pi`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
`sin^-1(sin3)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`tan^-1(tan2)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
tanx is periodic with period ____________.
The period of the function f(x) = tan3x is ____________.
The value of sin `["cos"^-1 (7/25)]` is ____________.
Find the value of `sin^-1(cos((33π)/5))`.