मराठी

Sin-1(sin12) - Mathematics

Advertisements
Advertisements

प्रश्न

`sin^-1(sin12)`

बेरीज

उत्तर

We know

`sin(sin^-1theta)=theta if - pi/2<=theta<=pi/2`

We have

= `sin^-1sin36°`

= `- sin^-1sin(4pi-12)`

= `-(4pi-12)`

= `-4pi+12`

= `12-4pi`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 1.09 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the value of `tan(2tan^(-1)(1/5))`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin3)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`tan^-1(tan2)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of sin1 (sin 1550°).


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


tanx is periodic with period ____________.


The period of the function f(x) = tan3x is ____________.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×