मराठी

If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x. - Mathematics

Advertisements
Advertisements

प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.

उत्तर

 

(tan1x)2 + (cot−1x)2 = 5π2/8

`=>(tan^(−1)x+cos^(−1)x)^2−2tan^(−1)xcot^(−1)x=(5π^2)/8`

`⇒(π/2)^2−2tan^(−1)x(π/2−tan^(−1)x)=(5π^2)/8`

`⇒π^2/4−πtan^(−1)x+2(tan^(−1)x)^2=(5π^2)/8`

`⇒2(tan^(−1)x)^2−πtan^(−1)x+π^2/4−(5π^2)/8=0`

`⇒2(tan^(−1)x)^2−πtan^(−1)x−(5π^2+2π^2)/8=0`

`⇒2(tan^(−1)x)2−πtan^(−1)x−(3π^2)/8=0`

Solving the quadratic equation, we get

`⇒tan^(−1)x=(π±sqrt(π^2+4xx2xx(3π^2)/8))/(2xx2)`

`⇒tan^(−1)x=(π±2π)/4`

`⇒tan^(−1)x=(3π)/4  or tan^(−1)x=−π/4 `

`⇒x=tan((3π)/4)  or x=tan(−π/4)`

`⇒x=−1`

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos12)`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×