Advertisements
Advertisements
प्रश्न
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
उत्तर
(tan−1x)2 + (cot−1x)2 = 5π2/8
`=>(tan^(−1)x+cos^(−1)x)^2−2tan^(−1)xcot^(−1)x=(5π^2)/8`
`⇒(π/2)^2−2tan^(−1)x(π/2−tan^(−1)x)=(5π^2)/8`
`⇒π^2/4−πtan^(−1)x+2(tan^(−1)x)^2=(5π^2)/8`
`⇒2(tan^(−1)x)^2−πtan^(−1)x+π^2/4−(5π^2)/8=0`
`⇒2(tan^(−1)x)^2−πtan^(−1)x−(5π^2+2π^2)/8=0`
`⇒2(tan^(−1)x)2−πtan^(−1)x−(3π^2)/8=0`
Solving the quadratic equation, we get
`⇒tan^(−1)x=(π±sqrt(π^2+4xx2xx(3π^2)/8))/(2xx2)`
`⇒tan^(−1)x=(π±2π)/4`
`⇒tan^(−1)x=(3π)/4 or tan^(−1)x=−π/4 `
`⇒x=tan((3π)/4) or x=tan(−π/4)`
`⇒x=−1`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin4)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos12)`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.