Advertisements
Advertisements
प्रश्न
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
उत्तर
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
LHS = `(9pi)/8-9/4sin^-1 1/3`
`=9/4(pi/2-sin^-1 1/3)`
`=9/4(cos^-1 1/3)`
`=9/4(sin^-1sqrt(1-1/9))`
`=9/4(sin^-1 (2sqrt2)/3)=` RHS
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin pi/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`sin(sin^-1 1/5+cos^-1x)=1`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If sin−1 x − cos−1 x = `pi/6` , then x =
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.