Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cos^-1{cos (5pi)/4}`
उत्तर
We know
`cos^-1(costheta)=thetaif 0<=theta<=pi`
We have
`cos^-1{cos (5pi)/4}=cos^-1{cos(2pi-(3pi)/4)}`
`=cos^-1{cos((3pi)/4)}`
`=(3pi)/4`
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin4)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate:
`sec{cot^-1(-5/12)}`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of cos−1 (cos 1540°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos−1 (cos 6).
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.