Advertisements
Advertisements
प्रश्न
Evaluate the following:
`sec(sin^-1 12/13)`
उत्तर
`sec(sin^-1 12/13)=sec[cos^-1sqrt(1-(12/13)^3)]`
`[thereforesin^-1x=cos^-1sqrt(1-x^2)]`
`=sec[cos^-1(sqrt(1-144/169))]`
`=sec[cos^-1(sqrt(25/169))]`
`=sec[cos^-1 5/13]`
`=sec[sec^-1 13/5]`
`==13/5`
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
The set of values of `\text(cosec)^-1(sqrt3/2)`
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`