मराठी

Evaluate the Following: `Tan 1/2(Cos^-1 Sqrt5/3)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`

उत्तर

Let, `cos^-1  sqrt5/3=theta`

`=> costheta=sqrt5/3`

`=>2cos^2  theta/2-1=sqrt5/3`

`=>cos^2  theta/2=(3+sqrt5)/6`

`=>theta/2=cos^-1(sqrt((3+sqrt5)/6))`

`=tan^-1((sqrt(1-(sqrt((3+sqrt5)/6))^2))/(sqrt((3+sqrt5)/6)))`

`=tan^-1(sqrt(1-(3+sqrt5)/6)/sqrt(3+sqrt5/6))`

`=tan^-1((sqrt((3-sqrt5)/6))/(sqrt((3+sqrt5)/6)))`

`=tan^-1(sqrt((3-sqrt5)/(3+sqrt5)))`

`=tan^-1(sqrt(((3-sqrt5)(3-sqrt5))/((3+sqrt5)(3-sqrt5))))`

`=tan^-1(sqrt((3-sqrt5)^2/(9-5)))`

`=tan^-1((3-sqrt5)/2)`

i. e. , `1/2(cos^-1  sqrt5/3)=tan^-1  ((3-sqrt5)/2)`

`=>tan  1/2(cos^-1  sqrt5/3)=tan[tan^-1((3-sqrt5)/2)]`

`thereforetan  1/2(cos^-1  sqrt5/3)=(3-sqrt5)/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 1.2 | पृष्ठ ११५

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of sin1 (sin 1550°).


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×