मराठी

Evaluate the Following: `Tan^-1(Tan (6pi)/7)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`tan^-1(tan  (6pi)/7)`

उत्तर

We know that

`tan^-1(tantheta)=theta,   -pi/2<theta<pi/2`

We have 

`tan^-1(tan  (6pi)/7)=tan^-1[tan(pi+pi/7)]`

`=tan^-1[tan(-pi/7)]`

`=-pi/7`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 3.2 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


tanx is periodic with period ____________.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×