Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(tan pi/3)`
उत्तर
We know that
`tan^-1(tantheta)=theta, -pi/2<theta<pi/2`
We have
`tan^-1(tan pi/3)=pi/3`
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
`tan^-1 2/3=1/2tan^-1 12/5`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of sin−1 (sin 1550°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
If sin−1 x − cos−1 x = `pi/6` , then x =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`
Find the value of `sin^-1(cos((33π)/5))`.