Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
उत्तर
Let x = tan θ
Now,
`tan^-1{(sqrt(1+x^2)+1)/x}=tan^-1{(sqrt(1+tan^2theta)+1)/tantheta}`
`=tan^-1{(sqrt(sec^2theta)+1)/tantheta}`
`=tan^-1{(sectheta+1)/tantheta}`
`=tan^-1{(costheta+1)/sintheta}`
`=tan^-1{(2cos^2 theta/2)/(2sin theta/2cos theta/2)}`
`=tan^-1{cot theta/2}`
`=tan^-1{tan(pi/2-theta/2)}`
`=pi/2-(tan^-1x)/2`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`cot(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If sin−1 x − cos−1 x = `pi/6` , then x =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The value of sin `["cos"^-1 (7/25)]` is ____________.
Find the value of `sin^-1(cos((33π)/5))`.