Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
उत्तर
Let `x = acos theta`
Now,
`tan^-1sqrt((a-x)/(a+x))=tan^-1sqrt((a-acostheta)/(a+acostheta))`
`=tan^-1sqrt((1-costheta)/(1+costheta))`
`=tan^-1sqrt((2sin^2 theta/2)/(2cos^2 theta/2))`
`=tan^-1(tan theta/2)`
`=theta/2`
`=1/2cos^-1(x/a)`
`thereforetan^-1sqrt((a-x)/(a+x))=(cos^-1(x/a))/2`
APPEARS IN
संबंधित प्रश्न
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (5pi)/4}`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If tan−1 (cot θ) = 2 θ, then θ =
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`