Advertisements
Advertisements
प्रश्न
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
उत्तर
\[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right) = \tan\left( \frac{\pi}{4} \right) \left[ \because \sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2} \right]\]
\[ = 1\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of sin (cot−1 x).
Write the principal value of `sin^-1(-1/2)`
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`