Advertisements
Advertisements
प्रश्न
Find the domain of `sec^(-1)(3x-1)`.
उत्तर
The range of sec x is the domain of sec−1 x
Now,
The range of sec x is (−∞, −1] ∪ [1, ∞)
∴ The domain of a given function would be
3x − 1 ≤ −1 and 3x − 1 ≥ 1
3x ≤ 0 and 3x ≥ 2
x ≤ 0 and x ≥ `2/3`
∴ The domain of the given function is (−∞, 0] ∪ [`2/3`, ∞)
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cosec{cot^-1(-12/5)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If sin−1 x − cos−1 x = `pi/6` , then x =
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 (cot θ) = 2 θ, then θ =
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`