Advertisements
Advertisements
प्रश्न
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
उत्तर
We know that
cosec-1 (cosec θ) = θ, [-π/2,0) ∪ (0,π/2]
`cosec^-1(cosec (6pi)/5)=cosec^-1[cosec(pi+pi/5)]`
`=cosec^-1(cosec-pi/5)`
`=-pi/5`
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^-1(sin pi/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Write the range of tan−1 x.
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
tanx is periodic with period ____________.