Advertisements
Advertisements
प्रश्न
`2tan^-1 3/4-tan^-1 17/31=pi/4`
उत्तर
LHS = `2tan^-1 3/4-tan^-1 17/31`
`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1 17/31` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(3/2)/(7/16)}-tan^-1 17/31`
`=tan^-1 24/7-tan^-1 17/31`
`=tan^-1((24/7-17/31)/(1+24/7xx17/31))` `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`
`=tan^-1((625/217)/(625/217))`
`=tan^-1 1=pi/4=` RHS
APPEARS IN
संबंधित प्रश्न
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`sin(sec^-1 17/8)`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`