Advertisements
Advertisements
Question
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Solution
LHS = `2tan^-1 3/4-tan^-1 17/31`
`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1 17/31` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(3/2)/(7/16)}-tan^-1 17/31`
`=tan^-1 24/7-tan^-1 17/31`
`=tan^-1((24/7-17/31)/(1+24/7xx17/31))` `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`
`=tan^-1((625/217)/(625/217))`
`=tan^-1 1=pi/4=` RHS
APPEARS IN
RELATED QUESTIONS
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin (17pi)/8)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`cosec{cot^-1(-12/5)}`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
`5tan^-1x+3cot^-1x=2x`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If sin−1 x − cos−1 x = `pi/6` , then x =
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].