English

`2tan^-1 3/4-tan^-1 17/31=Pi/4` - Mathematics

Advertisements
Advertisements

Question

`2tan^-1  3/4-tan^-1  17/31=pi/4`

Solution

LHS = `2tan^-1  3/4-tan^-1  17/31`

`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1  17/31`       `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(3/2)/(7/16)}-tan^-1  17/31`

`=tan^-1  24/7-tan^-1  17/31`

`=tan^-1((24/7-17/31)/(1+24/7xx17/31))`     `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`

`=tan^-1((625/217)/(625/217))`

`=tan^-1 1=pi/4=` RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.14 [Page 115]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.08 | Page 115

RELATED QUESTIONS

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of `f(x)=cos^-1x+cosx.`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(cos^-1  5/13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`cosec{cot^-1(-12/5)}`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`sin(sin^-1  1/5+cos^-1x)=1`


`5tan^-1x+3cot^-1x=2x`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


If sin−1 − cos−1 x = `pi/6` , then x = 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×