Advertisements
Advertisements
प्रश्न
`2tan^-1 3/4-tan^-1 17/31=pi/4`
उत्तर
LHS = `2tan^-1 3/4-tan^-1 17/31`
`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1 17/31` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1{(3/2)/(7/16)}-tan^-1 17/31`
`=tan^-1 24/7-tan^-1 17/31`
`=tan^-1((24/7-17/31)/(1+24/7xx17/31))` `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`
`=tan^-1((625/217)/(625/217))`
`=tan^-1 1=pi/4=` RHS
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin pi/6)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin (17pi)/8)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin4)`
`sin^-1(sin12)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sin(sin^-1 7/25)`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`cos(tan^-1 3/4)`
`sin(sin^-1 1/5+cos^-1x)=1`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 6).
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
tanx is periodic with period ____________.
The period of the function f(x) = tan3x is ____________.