हिंदी

`2tan^-1 3/4-tan^-1 17/31=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

`2tan^-1  3/4-tan^-1  17/31=pi/4`

उत्तर

LHS = `2tan^-1  3/4-tan^-1  17/31`

`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1  17/31`       `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(3/2)/(7/16)}-tan^-1  17/31`

`=tan^-1  24/7-tan^-1  17/31`

`=tan^-1((24/7-17/31)/(1+24/7xx17/31))`     `[becausetan^-1x-tan^-1y=tan^-1((x-y)/(1+xy))]`

`=tan^-1((625/217)/(625/217))`

`=tan^-1 1=pi/4=` RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.08 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin  (17pi)/8)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cos(tan^-1  3/4)`


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos−1 (cos 6).


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


tanx is periodic with period ____________.


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×