हिंदी

Solve the following: πcos-1x+sin-1 x2=π6 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following:

`cos^-1x+sin^-1  x/2=π/6`

योग

उत्तर

`cos^-1x+sin^-1 (x/2) = π/6`

`(π/2 − sin^-1x) + sin^-1(x/2) = π/6`

`π/2 − π/6 = sin^-1x−sin^-1(x/2)`

`sin^-1x−sin^-1(x/2) = π/3 = sin^-1(sqrt3/2)`

`sin^-1x = sin^-1(sqrt3/2) + sin^-1(x/2)`

`sin^-1(x) = sin^-1(sqrt3/2 sqrt(1−x^2/4) + x/2 sqrt(1 - 3/4))   ...[sin^-1 x + sin^-1y = sin^-1 [xsqrt(1 - y^2) + ysqrt(1 - x^2)].`

`sin^-1(x) = sin^-1[(sqrt3/2 sqrt(4−x^2)/2) + x/2 . 1/2]`

`x = (sqrt3 sqrt(4 - x^2))/4 + x/4`

`x - x/4 = (sqrt3 sqrt(4 - x^2))/4`

`(3x)/cancel4 =  (sqrt3 sqrt(4 - x^2))/cancel4`

Squaring both the sides

9x2 = 3(4 − x2)

3x2 = 4 - x2

3x2 + x2 = 4

4x2 = 4

x= 1

x = ± 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.12 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.12 | Q 3.2 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin2)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate the following:

`sec(sin^-1  12/13)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`sin(sin^-1  1/5+cos^-1x)=1`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×