हिंदी

Tan − 1 1 11 + Tan − 1 2 11 is Equal to (A) 0 (B) 1/2 (C) − 1 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 

विकल्प

  • 0

  • 1/2

  • − 1

  • none of these

MCQ

उत्तर

(d) none of these

We know that 
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
Now,
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11} = \tan^{- 1} \left( \frac{\frac{1}{11} + \frac{2}{11}}{1 - \frac{1}{11}\frac{2}{11}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{121 - 2}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{119}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{33}{119} \right)\]
\[ = 0 . 27\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 16 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Solve the equation for x:sin1x+sin1(1x)=cos1x


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1x+2cot^-1x=(2x)/3`


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×