Advertisements
Advertisements
प्रश्न
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
विकल्प
0
1/2
− 1
none of these
उत्तर
(d) none of these
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
Now,
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11} = \tan^{- 1} \left( \frac{\frac{1}{11} + \frac{2}{11}}{1 - \frac{1}{11}\frac{2}{11}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{121 - 2}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3}{11}}{\frac{119}{121}} \right)\]
\[ = \tan^{- 1} \left( \frac{33}{119} \right)\]
\[ = 0 . 27\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
`sin^-1(sin (7pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`tan^-1x+2cot^-1x=(2x)/3`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If sin−1 x − cos−1 x = `pi/6` , then x =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is