Advertisements
Advertisements
प्रश्न
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
उत्तर
Let a = `sin^-1 5/13` b = `cos^-1 3/5`
Let a = `sin^-1 5/13`
We know that
cos a = `sqrt(1 - sin^2 "a")`
`= sqrt(1 - (5/13)^2)`
`= sqrt(144/169)`
`= 12/13`
Let b = `cos^-1 3/5`
cos b = `3/5`
We know that
sin b = `sqrt(1 - cos^2 "b")`
`= sqrt(1 - (3/5)^2)`
`= sqrt(16/25)`
`= 4/5`
Now,
tan a = `(sin a)/(cos a)`
`= (5/13)/(12/13)`
`= 5/13 xx 13/12`
`= 5/12`
tan b = `(sin b)/(cos b)`
`= (4/5)/(3/5)`
`= 4/5 xx 5/3`
`= 4/3`
Now we know that
tan (a + b) = `(tan a + tan b)/(1 - tan a tan b)`
Putting tan a = `5/12` and tan b = `4/3`
tan (a + b) = `(5/12 + 4/3)/(1 - 5/12 xx 4/3)`
tan (a + b) = `((5 xx 3 + 4 xx 12)/36)/(1 - 20/36)`
= `((15 + 48)/36)/((36 - 20)/36)`
= `(63/36)/(16/36)`
= `63/36 xx 36/16`
= `63/16`
Thus, tan (a + b) = `63/16`
a + b = `tan^-1 (63/16)`
Putting values of a and b
`sin^-1 5/13 + cos^-1 3/5 = tan^-1 (63/16)`
Hence L.H.S = R.H.S
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
What is the principal value of `sin^-1(-sqrt3/2)?`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If sin−1 x − cos−1 x = `pi/6` , then x =
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The period of the function f(x) = tan3x is ____________.