हिंदी

Prove the following result- tan-1 6316=(sin-1 513+cos-1 35) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`

योग

उत्तर

Let a = `sin^-1  5/13` b = `cos^-1  3/5`

Let a = `sin^-1  5/13`

We know that

cos a = `sqrt(1 - sin^2 "a")`

`= sqrt(1 - (5/13)^2)`

`= sqrt(144/169)`

`= 12/13`

Let b = `cos^-1  3/5`

cos b = `3/5`

We know that

sin b = `sqrt(1 - cos^2 "b")`

`= sqrt(1 - (3/5)^2)`

`= sqrt(16/25)`

`= 4/5`

Now, 

tan a = `(sin a)/(cos a)`

`= (5/13)/(12/13)`

`= 5/13 xx 13/12`

`= 5/12`

tan b = `(sin b)/(cos b)`

`= (4/5)/(3/5)`

`= 4/5 xx 5/3`

`= 4/3`

Now we know that

tan (a + b) = `(tan a + tan b)/(1 - tan a  tan b)`

Putting tan a = `5/12` and tan b = `4/3`

tan (a + b) = `(5/12 + 4/3)/(1 - 5/12 xx 4/3)`

tan (a + b) = `((5 xx 3 + 4 xx 12)/36)/(1 - 20/36)`

= `((15 + 48)/36)/((36 - 20)/36)`

= `(63/36)/(16/36)`

= `63/36 xx 36/16`

= `63/16`

Thus, tan (a + b) = `63/16`

a + b = `tan^-1 (63/16)`

Putting values of a and b

`sin^-1  5/13 + cos^-1  3/5 = tan^-1  (63/16)`

Hence L.H.S = R.H.S

Hence Proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.08 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 2.3 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 (cos 1540°).


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


What is the principal value of `sin^-1(-sqrt3/2)?`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If sin−1 − cos−1 x = `pi/6` , then x = 


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×