हिंदी

If X < 0, Y < 0 Such that Xy = 1, Then Tan−1 X + Tan−1 Y Equals (A) π 2 (B) − π 2 (C) − π (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 

विकल्प

  • `pi/2`

  • `-pi/2`

  • − π

  • none of these

MCQ

उत्तर

(b) `-pi/2`
We know that 
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[x < 0, y < 0\]  such that
xy = 1
Let x = -a and y = -b, where a and b both are positive.
\[\therefore \tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[ = \tan^{- 1} \left( \frac{- a - a}{1 - 1} \right)\]
\[ = \tan^{- 1} \left( - \infty \right)\]
\[ = \tan^{- 1} \left\{ \tan\left( - \frac{\pi}{2} \right) \right\}\]
\[ = - \frac{\pi}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 11 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


If tan−1 (cot θ) = 2 θ, then θ =

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


The period of the function f(x) = tan3x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×