हिंदी

If α = Tan − 1 ( Tan 5 π 4 ) and β = Tan − 1 ( − Tan 2 π 3 ) , Then (A) 4 α = 3 β (B) 3 α = 4 β (C) α − β = 7 π 12 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

विकल्प

  • 4 α = 3 β

  • 3 α = 4 β

  • α − β = `(7pi)/12`

  • none of these

MCQ

उत्तर

(a) 4 α = 3 β
We know that 

\[\tan^{- 1} \left( \tan{x} \right) = x\]
\[\therefore \alpha = \tan^{- 1} \left( \tan\frac{5\pi}{4} \right)\]
\[ = \tan^{- 1} \left\{ \tan\left( \pi + \frac{\pi}{4} \right) \right\}\]
\[ = \tan^{- 1} \left( \tan\frac{\pi}{4} \right)\]
\[ = \frac{\pi}{4}\]
and
\[\beta = \tan^{- 1} \left\{ - \tan\left( \frac{2\pi}{3} \right) \right\}\]
\[ = \tan^{- 1} \left\{ - \tan\left( \pi - \frac{\pi}{3} \right) \right\}\]
\[ = \tan^{- 1} \left\{ \tan\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{\pi}{3}\]
\[\therefore 4\alpha = \pi\]
\[3\beta = \pi\]
∴ \[4\alpha = 3\beta\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 9 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If sin−1 − cos−1 x = `pi/6` , then x = 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the domain of `sec^(-1)(3x-1)`.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×