Advertisements
Advertisements
प्रश्न
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
विकल्प
4 α = 3 β
3 α = 4 β
α − β = `(7pi)/12`
none of these
उत्तर
(a) 4 α = 3 β
We know that
\[\tan^{- 1} \left( \tan{x} \right) = x\]
\[\therefore \alpha = \tan^{- 1} \left( \tan\frac{5\pi}{4} \right)\]
\[ = \tan^{- 1} \left\{ \tan\left( \pi + \frac{\pi}{4} \right) \right\}\]
\[ = \tan^{- 1} \left( \tan\frac{\pi}{4} \right)\]
\[ = \frac{\pi}{4}\]
and
\[\beta = \tan^{- 1} \left\{ - \tan\left( \frac{2\pi}{3} \right) \right\}\]
\[ = \tan^{- 1} \left\{ - \tan\left( \pi - \frac{\pi}{3} \right) \right\}\]
\[ = \tan^{- 1} \left\{ \tan\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{\pi}{3}\]
\[\therefore 4\alpha = \pi\]
\[3\beta = \pi\]
∴ \[4\alpha = 3\beta\]
APPEARS IN
संबंधित प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If sin−1 x − cos−1 x = `pi/6` , then x =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.