हिंदी

Prove That: `Cos^-1 4/5+Cos^-1 12/13=Cos^-1 33/65` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`

उत्तर

LHS = `cos^-1  4/5+cos^-1  12/13`

`=cos^-1[4/5xx12/13-sqrt(1-(4/5)^2)sqrt(1-(12/13)^2)]`      `[becausecos^-1x+cos^-1y=cos^-1(xy-sqrt(1-x^2)sqrt(1-y^2)]`

`=cos^-1[48/65-3/5xx5/13]`

`=cos^-1((48-15)/65)`

`=cos^-1  33/65=` RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.13 [पृष्ठ ९२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.13 | Q 4 | पृष्ठ ९२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (17pi)/8)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos(tan^-1  3/4)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin1 (sin 1550°).


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×