Advertisements
Advertisements
प्रश्न
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
विकल्प
`pi/6`
`pi/3`
`pi/2`
`-pi/3`
उत्तर
(a) `pi/6`
We have
α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right)\]
\[\text{ Now }, \alpha - \beta = \tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right) - \tan^{- 1} \frac{2x - y}{\sqrt{3}y}\]
\[ = \tan^{- 1} \left( \frac{\frac{\sqrt{3}x}{2y - x} - \frac{2x - y}{\sqrt{3}y}}{1 + \frac{\sqrt{3}x}{2y - x} \times \frac{2x - y}{\sqrt{3}y}} \right)\]
\[ = \tan^{- 1} \left( \frac{\frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{\sqrt{3}y\left( 2y - x \right)}}{\frac{\sqrt{3}y\left( 2y - x \right) + \sqrt{3}x\left( 2x - y \right)}{\sqrt{3}y\left( 2y - x \right)}} \right)\]
\[ = \tan^{- 1} \left( \frac{3xy - 4xy + 2 y^2 + 2 x^2 - xy}{2\sqrt{3} y^2 - \sqrt{3}xy + 2\sqrt{3} x^2 - \sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{2 y^2 + 2 x^2 - 2xy}{2\sqrt{3} y^2 + 2\sqrt{3} x^2 - 2\sqrt{3}xy} \right)\]
\[ = \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}\]
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin (13pi)/7)`
`sin^-1(sin2)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of sin−1 (sin 1550°).
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If sin−1 x − cos−1 x = `pi/6` , then x =
If tan−1 3 + tan−1 x = tan−1 8, then x =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If tan−1 (cot θ) = 2 θ, then θ =
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.