हिंदी

If Y = Sin (Sin X), Prove that D 2 Y D X 2 + Tan X D Y D X + Y Cos 2 X = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]

उत्तर

\[y = \sin(\sin x)\]

\[\frac{dy}{dx} = \cos(\sin x) . \cos x\]

\[\frac{d^2 y}{d x^2} = \cos(\sin x) . ( - \sin x) + \cos x . { - \sin(\sin x)} . \cos x = - \sin x . \cos(\sin x) - y \cos^2 x\]

\[\text { Now,} \]

\[\frac{d^2 y}{d x^2} + \tan x . \frac{dy}{dx} + y \cos^2 x\]

\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \frac{\sin x}{\cos x} . \cos(\sin x) . \cos x + y \cos^2 x\]

\[ = - \sin x . \cos(\sin x) - y \cos^2 x + \sin x . \cos(\sin x) + y \cos^2 x\]

\[ = 0 .\]

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) All India Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Write the value of `tan(2tan^(-1)(1/5))`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`sin^-1x=pi/6+cos^-1x`


`4sin^-1x=pi-cos^-1x`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×