Advertisements
Advertisements
प्रश्न
Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0
उत्तर
`e^x tan y dx = (e^x - 2)sec^2y dy`
Using variable seprable
`((sec^2y)/(tan y)) dy = (e^x/(e^x - 2))dx`
Integrating both side
`int ((sec^2 y)/(tany)) dy = int (e^x/(e^x - 2)) dx`
Let tan y=p ⇒ sec2y dy = dp and (ex−2) = q ⇒ exdx =dq
`int (dp)/p = int (dq)/q`
In (p) = In (q) + In(c), where c is constant of integration
p = qc
Replacing the values
`tan y = c(x^x - 2)`
When x = 0, `y = pi/4`
1 = c(-1)
c = -1
`tan y = 2 - e^x`
`y = tan^(-1) (2 - e^x)`
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx = (1 - cos x)/(1+cos x)`
For the differential equation, find the general solution:
`dy/dx = sqrt(4-y^2) (-2 < y < 2)`
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
`dy/dx = (1+x^2)(1+y^2)`
For the differential equation, find the general solution:
y log y dx - x dy = 0
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
For the differential equation find a particular solution satisfying the given condition:
`(x^3 + x^2 + x + 1) dy/dx = 2x^2 + x; y = 1` When x = 0
For the differential equation find a particular solution satisfying the given condition:
`x(x^2 - 1) dy/dx = 1` , y = 0 when x = 2
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.
Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.
At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).
In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).
Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.
Find the particular solution of the differential equation:
`y(1+logx) dx/dy - xlogx = 0`
when y = e2 and x = e
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
`y log y dy/dx + x – log y = 0`
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.
Solve the differential equation `"dy"/"dx" + 1` = ex + y.
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.
Solve the following differential equation
x2y dx – (x3 + y3)dy = 0
The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.