हिंदी

For the differential equation, find the general solution: ex tan y dx + (1 – ex) sec2 y dy = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

For the differential equation, find the general solution:

ex tan y dx + (1 – ex) sec2 y dy = 0

योग

उत्तर

We have, ex tan y dx + (1 - ex) sec2 y dy = 0 or ex tan y dx = -(1 - ex) sec2 y dy

⇒ `e^x/(1 - e^x) dx = (-sec^2y)/(tany)  dy`            ...(1)

Integrating (1) both sides, we get

`int(e^x)/(1 - e^x)  dx = - int(sec^2 y)/(tan y) dy`

Let `I_1 = int e^x/(1 - e^x) dx`

and `I_2 = int(sec^2y)/(tan y) dy`

Now, `I_1 = int e^x/(1 - e^x)  dx`

Putting 1- ex = t

⇒ -ex dx = dt

`I_1 = int (-dt)/t = -log |t| - log C_1`

`= - log (t C_1) = -log ((1 - e^x)C_1)`               ....(2)

Now, `I_2 = int (sec^2 y)/(tan y)  dy`

Putting tan y = t

⇒ sec2 y dy = dt

`I_2 = int dt/t = log |t| + log  C_2`

`= log |tany| + log C_2`

= log (C2 tan y)

Also, I1 = -I2

⇒ - log (C1 (1 - ex))

= - log (C2 tan y)

⇒ C1 (1 - ex) = C2 tan y

⇒ tan y = C (1 - ex)

Which is the required solution

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise 9.4 [पृष्ठ ३९६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise 9.4 | Q 10 | पृष्ठ ३९६

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx = sqrt(4-y^2)      (-2 < y < 2)`


For the differential equation, find the general solution:

`dy/dx + y = 1(y != 1)`


For the differential equation, find the general solution:

sec2 x tan y dx + sec2 y tan x dy = 0


For the differential equation, find the general solution:

(ex + e–x) dy – (ex – e–x) dx = 0


For the differential equation, find the general solution:

y log y dx - x dy = 0


For the differential equation, find the general solution:

`x^5  dy/dx = - y^5`


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation find a particular solution satisfying the given condition:

`x(x^2 - 1) dy/dx = 1` , y = 0  when x = 2


For the differential equation find a particular solution satisfying the given condition:

`dy/dx` = y tan x; y = 1 when x = 0


For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)`  find the solution curve passing through the point (1, –1).


Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.


At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).


The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.


In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (log­e 2 = 0.6931).


Find the particular solution of the differential equation:

`y(1+logx) dx/dy - xlogx = 0`

when y = e2 and x = e


Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Solve the equation for x: 

sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0 


Fill in the blank:

The integrating factor of the differential equation `dy/dx – y = x` is __________


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve `dy/dx = (x+y+1)/(x+y-1)  when  x = 2/3 and y = 1/3`


Solve

y dx – x dy = −log x dx


The resale value of a machine decreases over a 10 year period at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is changing is ₹ 2200 (x − 10) per year. Express the value of the machine as a function of its age and initial value. If the machine was originally worth ₹1,20,000, how much will it be worth when it is 10 years old?


Solve

`y log y  dx/ dy = log y  – x`


State whether the following statement is True or False:

A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation


Find the solution of `"dy"/"dx"` = 2y–x.


Find the differential equation of all non-vertical lines in a plane.


Solve the differential equation `"dy"/"dx" + 1` = ex + y.


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×