Advertisements
Advertisements
प्रश्न
For the differential equation, find the general solution:
ex tan y dx + (1 – ex) sec2 y dy = 0
उत्तर
We have, ex tan y dx + (1 - ex) sec2 y dy = 0 or ex tan y dx = -(1 - ex) sec2 y dy
⇒ `e^x/(1 - e^x) dx = (-sec^2y)/(tany) dy` ...(1)
Integrating (1) both sides, we get
`int(e^x)/(1 - e^x) dx = - int(sec^2 y)/(tan y) dy`
Let `I_1 = int e^x/(1 - e^x) dx`
and `I_2 = int(sec^2y)/(tan y) dy`
Now, `I_1 = int e^x/(1 - e^x) dx`
Putting 1- ex = t
⇒ -ex dx = dt
`I_1 = int (-dt)/t = -log |t| - log C_1`
`= - log (t C_1) = -log ((1 - e^x)C_1)` ....(2)
Now, `I_2 = int (sec^2 y)/(tan y) dy`
Putting tan y = t
⇒ sec2 y dy = dt
`I_2 = int dt/t = log |t| + log C_2`
`= log |tany| + log C_2`
= log (C2 tan y)
Also, I1 = -I2
⇒ - log (C1 (1 - ex))
= - log (C2 tan y)
⇒ C1 (1 - ex) = C2 tan y
⇒ tan y = C (1 - ex)
Which is the required solution
APPEARS IN
संबंधित प्रश्न
For the differential equation, find the general solution:
`dy/dx = sqrt(4-y^2) (-2 < y < 2)`
For the differential equation, find the general solution:
`dy/dx + y = 1(y != 1)`
For the differential equation, find the general solution:
sec2 x tan y dx + sec2 y tan x dy = 0
For the differential equation, find the general solution:
(ex + e–x) dy – (ex – e–x) dx = 0
For the differential equation, find the general solution:
y log y dx - x dy = 0
For the differential equation, find the general solution:
`x^5 dy/dx = - y^5`
For the differential equation, find the general solution:
`dy/dx = sin^(-1) x`
For the differential equation find a particular solution satisfying the given condition:
`x(x^2 - 1) dy/dx = 1` , y = 0 when x = 2
For the differential equation find a particular solution satisfying the given condition:
`dy/dx` = y tan x; y = 1 when x = 0
For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)` find the solution curve passing through the point (1, –1).
Find the equation of a curve passing through the point (0, -2) given that at any point (x, y) on the curve, the product of the slope of its tangent and y-coordinate of the point is equal to the x-coordinate of the point.
At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).
The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.
In a bank, principal increases continuously at the rate of r% per year. Find the value of r if Rs 100 doubles itself in 10 years (loge 2 = 0.6931).
Find the particular solution of the differential equation:
`y(1+logx) dx/dy - xlogx = 0`
when y = e2 and x = e
Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0
Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x = `pi/3`
Solve the equation for x:
sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0
Fill in the blank:
The integrating factor of the differential equation `dy/dx – y = x` is __________
Solve the differential equation:
`dy/dx = 1 +x+ y + xy`
Solve `dy/dx = (x+y+1)/(x+y-1) when x = 2/3 and y = 1/3`
Solve
y dx – x dy = −log x dx
The resale value of a machine decreases over a 10 year period at a rate that depends on the age of the machine. When the machine is x years old, the rate at which its value is changing is ₹ 2200 (x − 10) per year. Express the value of the machine as a function of its age and initial value. If the machine was originally worth ₹1,20,000, how much will it be worth when it is 10 years old?
Solve
`y log y dx/ dy = log y – x`
State whether the following statement is True or False:
A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation
Find the solution of `"dy"/"dx"` = 2y–x.
Find the differential equation of all non-vertical lines in a plane.
Solve the differential equation `"dy"/"dx" + 1` = ex + y.
Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]
Find the equation of the curve passing through the (0, –2) given that at any point (x, y) on the curve the product of the slope of its tangent and y-co-ordinate of the point is equal to the x-co-ordinate of the point.