हिंदी

Solve y dx – x dy = −log x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve

y dx – x dy = −log x dx

योग

उत्तर

y dx – x dy = – log x dx

Dividing throughout by dx, we get

`y-x dy/dx =  – log x `

∴ `-xdy/dx + y = - log x`

∴ `dy/dx - 1/x y = logx/x`

The given equation is of the form

`dy/dx + py = Q`

where, `P = -1/x and Q = logx/x`

∴ I.F. = `e ^(int^(pdx) = e^(int^(-1/xdx) e ^-logx`

= `e^(logx ^-1) =  x ^-1 = 1/x`

∴ Solution of the given equation is

`y(I.F.) =int Q (I.F.) dx + c`

∴ `y/x = int logx/x xx1/xdx+c`

In R. H. S., put log x = t  …(i)

∴ x = et

Differentiating (i) w.r.t. x, we get

`1/xdx = dt`

∴ `y/x = int t/e^t dt +c`

∴ `y/x = int te^t  dt +c`

= `t int e^-t dt - int (d/dt(t)xxint e^-t dt) dt +c `

= `-te^-t - int (-e^-t) dt +c`

= `-te^-t + int e^-t dt +c`

= – te–t – e –t + c

= `(-t-t)/e^t + c`

= `(- logx -1)/x +c`

∴ y = cx – (1 + log x)

∴ log x + y + 1 = cx

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.05 | पृष्ठ १७३

संबंधित प्रश्न

For the differential equation, find the general solution:

`dy/dx + y = 1(y != 1)`


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)`  find the solution curve passing through the point (1, –1).


At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (- 4, -3). Find the equation of the curve given that it passes through (-2, 1).


The general solution of the differential equation `dy/dx = e^(x+y)` is ______.


Find the equation of the curve passing through the point `(0,pi/4)`, whose differential equation is sin x cos y dx + cos x sin y dy = 0.


Find the particular solution of the differential equation:

`y(1+logx) dx/dy - xlogx = 0`

when y = e2 and x = e


Find the particular solution of the differential equation `dy/dx + 2y tan x = sin x` given that y = 0 when x =  `pi/3`


Solve the differential equation `"dy"/"dx" = 1 + "x"^2 +  "y"^2  +"x"^2"y"^2`, given that y = 1 when x = 0.


Solve `dy/dx = (x+y+1)/(x+y-1)  when  x = 2/3 and y = 1/3`


Solve

`y log  y dy/dx + x  – log y = 0`


Solve

`y log y  dx/ dy = log y  – x`


State whether the following statement is True or False:

A differential equation in which the dependent variable, say y, depends only on one independent variable, say x, is called as ordinary differential equation


Solve the differential equation `(x^2 - 1) "dy"/"dx" + 2xy = 1/(x^2 - 1)`.


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.

Which method of solving a differential equation can be used to solve `"dy"/"dx" = "k"(50 - "y")`?


A hostel has 100 students. On a certain day (consider it day zero) it was found that two students are infected with some virus. Assume that the rate at which the virus spreads is directly proportional to the product of the number of infected students and the number of non-infected students. If the number of infected students on 4th day is 30, then number of infected studetns on 8th day will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×