मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Solve y dx – x dy = −log x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve

y dx – x dy = −log x dx

बेरीज

उत्तर

y dx – x dy = – log x dx

Dividing throughout by dx, we get

`y-x dy/dx =  – log x `

∴ `-xdy/dx + y = - log x`

∴ `dy/dx - 1/x y = logx/x`

The given equation is of the form

`dy/dx + py = Q`

where, `P = -1/x and Q = logx/x`

∴ I.F. = `e ^(int^(pdx) = e^(int^(-1/xdx) e ^-logx`

= `e^(logx ^-1) =  x ^-1 = 1/x`

∴ Solution of the given equation is

`y(I.F.) =int Q (I.F.) dx + c`

∴ `y/x = int logx/x xx1/xdx+c`

In R. H. S., put log x = t  …(i)

∴ x = et

Differentiating (i) w.r.t. x, we get

`1/xdx = dt`

∴ `y/x = int t/e^t dt +c`

∴ `y/x = int te^t  dt +c`

= `t int e^-t dt - int (d/dt(t)xxint e^-t dt) dt +c `

= `-te^-t - int (-e^-t) dt +c`

= `-te^-t + int e^-t dt +c`

= – te–t – e –t + c

= `(-t-t)/e^t + c`

= `(- logx -1)/x +c`

∴ y = cx – (1 + log x)

∴ log x + y + 1 = cx

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.05 | पृष्ठ १७३

संबंधित प्रश्‍न

For the differential equation, find the general solution:

`dy/dx = (1 - cos x)/(1+cos x)`


For the differential equation, find the general solution:

`dy/dx = sqrt(4-y^2)      (-2 < y < 2)`


For the differential equation, find the general solution:

sec2 x tan y dx + sec2 y tan x dy = 0


For the differential equation, find the general solution:

`dy/dx = (1+x^2)(1+y^2)`


For the differential equation, find the general solution:

y log y dx - x dy = 0


For the differential equation, find the general solution:

`x^5  dy/dx = - y^5`


For the differential equation, find the general solution:

`dy/dx = sin^(-1) x`


For the differential equation, find the general solution:

ex tan y dx + (1 – ex) sec2 y dy = 0


For the differential equation find a particular solution satisfying the given condition:

`x(x^2 - 1) dy/dx = 1` , y = 0  when x = 2


Find the equation of a curve passing through the point (0, 0) and whose differential equation is y′ = e x sin x.


For the differential equation `xy(dy)/(dx) = (x + 2)(y + 2)`  find the solution curve passing through the point (1, –1).


In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?


The general solution of the differential equation `dy/dx = e^(x+y)` is ______.


Find the particular solution of the differential equation ex tan y dx + (2 – ex) sec2 y dy = 0, give that `y = pi/4` when x = 0


Solve the equation for x: 

sin-1x + sin-1(1 - x) = cos-1x, x ≠ 0 


Solve the differential equation:

`dy/dx = 1 +x+ y + xy`


Solve

`y log  y dy/dx + x  – log y = 0`


Solve: (x + y)(dx – dy) = dx + dy. [Hint: Substitute x + y = z after seperating dx and dy]


The solution of the differential equation, `(dy)/(dx)` = (x – y)2, when y (1) = 1, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×